Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Immun Inflamm Dis ; 12(3): e1225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38533918

ABSTRACT

BACKGROUND: The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS: We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 µg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS: The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 µg, while weaker responses were seen at 10, 20, and 100 µg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 µg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION: Overall, this study demonstrated that sensitization with 50 µg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.


Subject(s)
Asthma , Bronchial Hyperreactivity , Respiratory Hypersensitivity , Animals , Mice , Ovalbumin , Respiratory Aerosols and Droplets , Asthma/pathology , Methacholine Chloride
2.
Plant Sci ; 343: 112059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458573

ABSTRACT

Lignin is a complex biopolymer formed through the condensation of three monomeric precursors known as monolignols. However, the mechanism underlying lignin precursor transport remains elusive, with uncertainty over whether it occurs through passive diffusion or an active energized process. ATP-binding cassette 36 (ABCG36) plays important roles in abiotic stress resistance. In this study, we investigated the transport functions of LkABCG36 (Larix kaempferi) for lignin precursors and the potential effects of LkABCG36 overexpression in plants. LkABCG36 enhanced the ability of tobacco (Nicotiana tabacum) bright yellow-2 (BY-2) cells to resist monolignol alcohol stress. Furthermore, LkABCG36 overexpression promoted lignin deposition in tobacco plant stem tissue. To understand the underlying mechanism, we measured the BY-2 cell ability to export lignin monomers and the uptake of monolignol precursors in inside-out (inverted) plasma membrane vesicles. We found that the transport of coniferyl and sinapyl alcohols is an ATP-dependent process. Our data suggest that LkABCG36 contributes to lignin accumulation in tobacco stem tissues through a mechanism involving the active transport of lignin precursors to the cell wall. These findings shed light on the lignin biosynthesis process, with important implications for enhancing lignin deposition in plants, potentially leading to improved stress tolerance and biomass production.


Subject(s)
Lignin , Membrane Transport Proteins , Lignin/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Cell Wall/metabolism , Plants/metabolism , Adenosine Triphosphate/metabolism
3.
J Ethnopharmacol ; 326: 117927, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38373665

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY: To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS: The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS: JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION: Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.


Subject(s)
Asthma , Drugs, Chinese Herbal , Immunity, Innate , Mice , Animals , Interleukin-33 , Interleukin-13 , Interleukin-5 , Molecular Docking Simulation , Lymphocytes/metabolism , Lung , Inflammation/drug therapy , Inflammation/pathology , Cytokines/metabolism , Bronchoalveolar Lavage Fluid , Immunoglobulin E , Ovalbumin/pharmacology , Mice, Inbred BALB C , Disease Models, Animal
4.
Front Cell Infect Microbiol ; 14: 1325500, 2024.
Article in English | MEDLINE | ID: mdl-38333037

ABSTRACT

The vaginal microbiota plays a crucial role in female reproductive health and is considered a biomarker for predicting disease outcomes and personalized testing. However, its relationship with human papillomavirus (HPV) infection and cervical cancer is not yet clear. Therefore, this article provides a review of the association between the vaginal microbiota, HPV infection, and cervical cancer. We discuss the composition of the vaginal microbiota, its dysbiosis, and its relationship with HPV infection, as well as potential mechanisms in the development of cervical cancer. In addition, we assess the feasibility of treatment strategies such as probiotics and vaginal microbiota transplantation to modulate the vaginal microbiota for the prevention and treatment of diseases related to HPV infection and cervical cancer. In the future, extensive replication studies are still needed to gain a deeper understanding of the complex relationship between the vaginal microbiota, HPV infection, and cervical cancer, and to clarify the role of the vaginal microbiota as a potential biomarker for predicting disease outcomes, thus providing a theoretical basis for personalized testing.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomaviridae , Vagina , Biomarkers
5.
Genes (Basel) ; 15(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38254964

ABSTRACT

Improving seed oil quality in peanut (Arachis hypogaea) has long been an aim of breeding programs worldwide. The genetic resources to achieve this goal are limited. We used an advanced recombinant inbred line (RIL) population derived from JH5 × KX01-6 to explore quantitative trait loci (QTL) affecting peanut oil quality and their additive effects, epistatic effects, and QTL × environment interactions. Gas chromatography (GC) analysis suggested seven fatty acids components were obviously detected in both parents and analyzed in a follow-up QTL analysis. The major components, palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2), exhibited considerable phenotypic variation and fit the two major gene and minor gene mixed-inheritance model. Seventeen QTL explained 2.57-38.72% of the phenotypic variation in these major components, with LOD values of 4.12-37.56 in six environments, and thirty-five QTL explained 0.94-32.21% of the phenotypic variation, with LOD values of 5.99-150.38 in multiple environments. Sixteen of these QTL were detected in both individual and multiple environments. Among these, qFA_08_1 was a novel QTL with stable, valuable and major effect. Two other major-effect QTL, qFA_09_2 and qFA_19_3, share the same physical position as FAD2A and FAD2B, respectively. Eleven stable epistatic QTL involving nine loci explained 1.30-34.97% of the phenotypic variation, with epistatic effects ranging from 0.09 to 6.13. These QTL could be valuable for breeding varieties with improved oil quality.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Plant Breeding , Fatty Acids/genetics , Plant Oils
6.
J Virol ; 98(1): e0135923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084959

ABSTRACT

Phage therapy has shown great promise for the treatment of multidrug-resistant bacterial infections. However, the lack of a thorough and organized understanding of phage-body interactions has limited its clinical application. Here, we administered different purified phages (Salmonella phage SE_SZW1, Acinetobacter phage AB_SZ6, and Pseudomonas phage PA_LZ7) intravenously to healthy animals (rats and monkeys) to evaluate the phage-induced host responses and phage pharmacokinetics with different intravenous (IV) doses in healthy animals. The plasma and the organs were sampled after different IV doses to determine the phage biodistribution, phage-induced cytokines, and antibodies. The potential side effects of phages on animals were assessed. A non-compartment model revealed that the plasma phage titer gradually decreased over time following a single dose. Repeated doses resulted in a 2-3 Log10 decline of the plasma phage titer at 5 min compared to the first dose, regardless of the type of phage administered in rats. Host innate immune responses were activated including splenic enlargement following repeated doses. Phage-specific neutralization antibodies in animals receiving phages were detected. Similar results were obtained from monkeys. In conclusion, the mammalian bodies were well-tolerant to the administered phages. The animal responses to the phages and the phage biodistribution profiles could have a significant impact on the efficacy of phage therapy.IMPORTANCEPhage therapy has demonstrated potential in addressing multidrug-resistant bacterial infections. However, an insufficient understanding of phage-host interactions has impeded its broader clinical application. In our study, specific phages were administered intravenously (IV) to both rats and monkeys to elucidate phage-host interactions and evaluate phage pharmacokinetics (PK). Results revealed that with successive IV administrations, there was a decrease in plasma phage concentrations. Concurrently, these administrations elicited both innate and adaptive immune responses in the subjects. Notably, the observed immune responses and PK profiles exhibited variation contingent upon the phage type and the mammalian host. Despite these variations, the tested mammals exhibited a favorable tolerance to the IV-administered phages. This underscores the significance of comprehending these interactions for the optimization of phage therapy outcomes.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Animals , Humans , Rats , Bacterial Infections/therapy , Bacteriophages/physiology , Mammals , Pseudomonas Phages , Tissue Distribution , Drug Resistance, Multiple, Bacterial
7.
J Genet Genomics ; 51(1): 16-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37647984

ABSTRACT

Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.


Subject(s)
Plants , Salt Stress , Plants/genetics , Plant Development , Agriculture , Salt Tolerance , Soil/chemistry
8.
Microbiol Spectr ; 12(1): e0188223, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38014983

ABSTRACT

IMPORTANCE: Phage therapy is gaining traction as an alternative to antibiotics due to the rise of multi-drug-resistant (MDR) bacteria. This study assessed the pharmacokinetics and safety of PA_LZ7, a phage targeting MDR Pseudomonas aeruginosa, in mice. After intravenous administration, the phage showed an exponential decay in plasma and its concentration dropped significantly within 24 h for all dosage groups. Although there was a temporary increase in certain plasma cytokines and spleen weight at higher dosages, no significant toxicity was observed. Therefore, PA_LZ7 shows potential as an effective and safe candidate for future phage therapy against MDR P. aeruginosa infections.


Subject(s)
Bacteriophages , Pseudomonas Infections , Pseudomonas Phages , Animals , Mice , Pseudomonas Phages/genetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa
9.
J Integr Plant Biol ; 66(3): 303-329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108117

ABSTRACT

Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).


Subject(s)
Arabidopsis , Crops, Agricultural , Crops, Agricultural/genetics , Arabidopsis/physiology , Glycine max , Salt Tolerance/genetics , Salinity
10.
Front Plant Sci ; 14: 1217193, 2023.
Article in English | MEDLINE | ID: mdl-37915515

ABSTRACT

Salt and alkaline stresses often occur together, severely threatening plant growth and crop yields. Salt stress induces osmotic stress, ionic stress, and secondary stresses, such as oxidative stress. Plants under saline-alkali stress must develop suitable mechanisms for adapting to the combined stress. Sustained plant growth requires maintenance of ion and pH homeostasis. In this review, we focus on the mechanisms of ion and pH homeostasis in plant cells under saline-alkali stress, including regulation of ion sensing, ion uptake, ion exclusion, ion sequestration, and ion redistribution among organs by long-distance transport. We also discuss outstanding questions in this field.

11.
Biomed Pharmacother ; 167: 115556, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778269

ABSTRACT

Asthma is a complex and heterogeneous respiratory disease that causes serious social and economic burdens. Current drugs such as ß2-agonists cannot fully control asthma. Our previous study found that Transgelin-2 is a potential target for treating asthmatic pulmonary resistance. Herein, we discovered a zolinium compound, TSG1180, that showed a strong interaction with Transgelin-2. The equilibrium dissociation constants (KD) of TSG1180 to Transgelin-2 were determined to be 5.363 × 10-6 and 9.81 × 10-6 M by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Cellular thermal shift assay (CETSA) results showed that the thermal stability of Transgelin-2 increased after coincubation of TSG1180 with lysates of airway smooth muscle cells (ASMCs). Molecular docking showed that Arg39 may be the key residue for the binding. Then, the SPR result showed that the binding affinity of TSG1180 to Transgelin-2 mutant (R39E) was decreased by 1.69-fold. Real time cell analysis (RTCA) showed that TSG1180 treatment could relax ASMCs by 19 % (P < 0.05). Once Transgelin-2 was inhibited, TSG1180 cannot induce a relaxation effect, suggesting that the relaxation effect was specifically mediated by Transgelin-2. In vivo study showed TSG1180 effectively reduced pulmonary resistance by 64 % in methacholine-induced mice model (P < 0.05). Furthermore, the phosphorylation of Ezrin at T567 was increased by 8.06-fold, the phosphorylation of ROCK at Y722 was reduced by 38 % and the phosphorylation of RhoA at S188 was increased by 52 % after TSG1180 treatment. These results suggested that TSG1180 could be a Transgelin-2 agonist for further optimization and development as an anti-asthma drug.


Subject(s)
Asthma , Mice , Animals , Molecular Docking Simulation , Asthma/drug therapy , Asthma/metabolism , Lung , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/metabolism
12.
iScience ; 26(9): 107605, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664634

ABSTRACT

Bone stress injuries are common overuse injuries, especially in soldiers, athletes, and performers. In contrast to various post-injury treatments, early protection against bone stress injuries can provide greater benefit. This study explored the early protection strategies against bone stress injuries by mobilization of endogenous targeted bone remodeling. The effects of various pharmaceutical/biophysical approaches, individual or combinational, were investigated by giving intervention before fatigue loading. We optimized the dosage and administration parameters and found that early intervention with pulsed electromagnetic field and parathyroid hormone (i.e., PEMF+PTH) resulted in the most pronounced protective effects among all the approaches against the bone stress injuries. In addition, the mechanisms by which the strategy mobilizes targeted bone remodeling and enhances the self-repair capacity of bone were systematically investigated. This study proposes strategies to reduce the incidence of bone stress injuries in high-risk populations (e.g., soldiers and athletes), particularly for those before sudden increased physical training.

13.
Environ Pollut ; 337: 122543, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37716693

ABSTRACT

The toxicity of microplastics (MPs) to aquatic organisms has been extensively studied recently. However, few studies have investigated the effects of MPs in sediments on aquatic ecosystem functioning. In the present study, we conducted an in situ experiment to explore the concentration-dependent effects (0.025%, 0.25%, 2.5%) and size-dependent effects (150-300 µm and 500-1000 µm) of polypropylene microplastics (PP MPs) on Vallisneria natans litter decomposition dynamics, in particular, the process associated with macroinvertebrates, microorganisms, as well as microalgae and/or cyanobacteria. The results showed that exposure to high concentrations and large sizes of PP MPs can accelerate leaf litter biomass loss and nutrition release. Moreover, microbial respiration, microalgal and/or cyanobacteria chlorophyll-a were also significantly affected by PP MPs. However, PP MPs have no effect on the abundance of associated macroinvertebrate during the experiment, despite the collection of five macroinvertebrate taxa from two functional feeding groups (i.e., collectors and scrapers). Therefore, our experiment demonstrated that PP MPs may enhance leaf litter decomposition through effected microbial metabolic activity, microalgal and/or cyanobacteria biomass in the sedimentary lake. Overall, our findings highlight that PP MPs have the potential to interfere with the basic ecological functions such as plant litter decomposition in aquatic environments.


Subject(s)
Microalgae , Water Pollutants, Chemical , Ecosystem , Microplastics , Plastics , Lakes , China , Water Pollutants, Chemical/toxicity
14.
Int J Nanomedicine ; 18: 3663-3694, 2023.
Article in English | MEDLINE | ID: mdl-37427368

ABSTRACT

Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Drug Delivery Systems/methods , Prospective Studies , Quality of Life , Glioma/drug therapy , Glioblastoma/drug therapy , Glioblastoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
15.
Curr Issues Mol Biol ; 45(7): 5914-5934, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37504290

ABSTRACT

Soil salinization inhibits plant growth and seriously restricts food security and agricultural development. Excessive salt can cause ionic stress, osmotic stress, and ultimately oxidative stress in plants. Plants exclude excess salt from their cells to help maintain ionic homeostasis and stimulate phytohormone signaling pathways, thereby balancing growth and stress tolerance to enhance their survival. Continuous innovations in scientific research techniques have allowed great strides in understanding how plants actively resist salt stress. Here, we briefly summarize recent achievements in elucidating ionic homeostasis, osmotic stress regulation, oxidative stress regulation, and plant hormonal responses under salt stress. Such achievements lay the foundation for a comprehensive understanding of plant salt-tolerance mechanisms.

16.
J Exp Bot ; 74(17): 5394-5404, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37326597

ABSTRACT

Abscisic acid (ABA) is an essential phytohormone for plant responses to complex and variable environmental conditions. The molecular basis of the ABA signaling pathway has been well elucidated. SnRK2.2 and SnRK2.3 are key protein kinases participating in ABA responses, and the regulation of their activity plays an important role in signaling. Previous mass spectroscopy analysis of SnRK2.3 suggested that ubiquitin and homologous proteins may bind directly to the kinase. Ubiquitin typically recruits E3 ubiquitin ligase complexes to target proteins, marking them for degradation by the 26S proteasome. Here, we show that SnRK2.2 and SnRK2.3 interact with ubiquitin but are not covalently attached to the protein, resulting in the suppression of their kinase activity. The binding between SnRK2.2, SnRK2.3, and ubiquitin is weakened under prolonged ABA treatment. Overexpression of ubiquitin positively regulated the growth of seedlings exposed to ABA. Our results thus demonstrate a novel function for ubiquitin, which negatively regulates ABA responses by directly inhibiting SnRK2.2 and SnRK2.3 kinase activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Abscisic Acid/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ubiquitin/metabolism
17.
J Genet Genomics ; 50(12): 960-970, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37127254

ABSTRACT

Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca2+ sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na+/K+ homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Zea mays/genetics , Plant Breeding , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Homeostasis , Gene Expression Regulation, Plant/genetics
18.
Theor Appl Genet ; 136(5): 97, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027047

ABSTRACT

KEY MESSAGE: AhyHOF1, likely encoding a WRI1 transcription factor, plays critical roles in peanut oil synthesis. Although increasing the oil content of peanut to meet growing demand has long been a primary aim of breeding programs worldwide, the mining of genetic resources to achieve this objective has obviously lagged behind that of other oil crops. In the present study, we developed an advanced recombinant inbred line population containing 192 F9:11 families derived from parents JH5 and KX01-6. We then constructed a high-resolution genetic map covering 3,706.382 cM, with an average length of 185.32 cM per linkage group, using 2840 polymorphic SNPs. Two stable QTLs, qCOA08_1 and qCOA08_2 having the highest contributions to genetic variation (16.1% and 20.7%, respectively), were simultaneously detected in multiple environments and closely mapped within physical intervals of approximately 2.9 Mb and 1.7 Mb, respectively, on chromosome A08. In addition, combined analysis of whole-genome and transcriptome resequencing data uncovered a strong candidate gene encoding a WRI1 transcription factor and differentially expressed between the two parents. This gene, designated as High Oil Favorable gene 1 in Arachis hypogaea (AhyHOF1), was hypothesized to play roles in oil accumulation. Examination of near-inbred lines of #AhyHOF1/#Ahyhof1 provided further evidence that AhyHOF1 increases oil content, mainly by affecting the contents of several fatty acids. Taken together, our results provide valuable information for cloning the favorable allele for oil content in peanut. In addition, the closely linked polymorphic SNP markers within qCOA08_1 and qCOA08_2 loci may be useful for accelerating marker-assisted selection breeding of peanut.


Subject(s)
Arachis , Plant Breeding , Humans , Arachis/genetics , Chromosome Mapping/methods , Quantitative Trait Loci , Transcription Factors/genetics
19.
Plant Cell ; 35(8): 2997-3020, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37119239

ABSTRACT

Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Salt Tolerance/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phytochrome A/metabolism , Phytochrome B/metabolism , Light , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
20.
Eur Radiol ; 33(5): 3425-3434, 2023 May.
Article in English | MEDLINE | ID: mdl-36897349

ABSTRACT

OBJECTIVES: To investigate the value of contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine for predicting clinical outcomes in patients with chronic liver disease (CLD). METHODS: Three hundred and fourteen CLD patients who underwent gadobenate dimeglumine-enhanced hepatic magnetic resonance imaging were stratified into three groups: nonadvanced CLD (n = 116), compensated advanced CLD (n = 120), and decompensated advanced CLD (n = 78) groups. The liver-to-portal vein contrast ratio (LPC) and liver-spleen contrast ratio (LSC) at the hepatobiliary phase were measured. The value of LPC for predicting hepatic decompensation and transplant-free survival was assessed using Cox regression analysis and Kaplan-Meier analysis. RESULTS: The diagnostic performance of LPC was significantly better than LSC in evaluating the severity of CLD. During a median follow-up period of 53.0 months, the LPC was a significant predictor for hepatic decompensation (p < 0.001) in patients with compensated advanced CLD. The predictive performance of LPC was higher than that of the model for end-stage liver disease score (p = 0.006). With the optimal cut-off value, patients with LPC ≤ 0.98 had a higher cumulative incidence of hepatic decompensation than patients with LPC > 0.98 (p < 0.001). The LPC was also a significant predictive factor for transplant-free survival in patients with compensated advanced CLD (p = 0.007) and those with decompensated advanced CLD (p = 0.002). CONCLUSIONS: Contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine is a valuable imaging biomarker for predicting hepatic decompensation and transplant-free survival in CLD patients. KEY POINTS: • The liver-to-portal vein contrast ratio (LPC) significantly outperformed liver-spleen contrast ratio in evaluating the severity of chronic liver disease. • The LPC was a significant predictor for hepatic decompensation in patients with compensated advanced chronic liver disease. • The LPC was a significant predictor for transplant-free survival in patients with compensated and those with decompensated advanced chronic liver disease.


Subject(s)
End Stage Liver Disease , Liver Diseases , Organometallic Compounds , Humans , Portal Vein/diagnostic imaging , Contrast Media/pharmacology , Gadolinium DTPA , End Stage Liver Disease/diagnostic imaging , End Stage Liver Disease/surgery , Retrospective Studies , Severity of Illness Index , Meglumine , Magnetic Resonance Imaging/methods , Liver Cirrhosis
SELECTION OF CITATIONS
SEARCH DETAIL
...